Dominant Shi regions with a fixed separating wall: bijective enumeration

نویسندگان

  • Alessandro Conflitti
  • Ricardo Mamede
  • Eleni Tzanaki
چکیده

We present a purely combinatorial proof by means of an explicit bijection, of the exact number of dominant regions having as a separating wall the hyperplane associated to the longest root in the m-extended Shi hyperplane arrangement of type A and dimension n− 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Shi regions with a fixed separating wall

Athanasiadis introduced separating walls for a region in the extended Shi arrangement and used them to generalize the Narayana numbers. In this paper, we fix a hyperplane in the extended Shi arrangement for type A and calculate the number of dominant regions which have the fixed hyperplane as a separating wall; that is, regions where the hyperplane supports a facet of the region and separates t...

متن کامل

Enumeration of Dominant Solutions: An Application in Transport Network Design

A One-Dimensional Binary Integer Programming Problem (1DB-IPP) is concerned with selecting a subset from a set of k items in budget constraint to optimize an objective function. In this problem a dominant solution is defined as a feasible selection to which no further item could be added in budget constraint. This paper presents a simple algorithm for Enumeration of Dominant Solutions (EDS) and...

متن کامل

A Bijection for Directed-Convex Polyominoes

In this paper we consider two classes of lattice paths on the plane which use north, east, south, and west unitary steps, beginning and ending at 0 0 . We enumerate them according to the number of steps by means of bijective arguments; in particular, we apply the cycle lemma. Then, using these results, we provide a bijective proof for the number of directed-convex polyominoes having a fixed num...

متن کامل

Bijective Counting of Involutive Baxter Permutations

We enumerate bijectively the family of involutive Baxter permutations according to various parameters; in particular we obtain an elementary proof that the number of involutive Baxter permutations of size 2n with no fixed points is 3·2 n−1

متن کامل

Banach module valued separating maps and automatic continuity

For two algebras $A$ and $B$, a linear map $T:A longrightarrow B$ is called separating, if $xcdot y=0$ implies $Txcdot Ty=0$ for all $x,yin A$. The general form and the automatic continuity of separating maps between various Banach algebras have been studied extensively. In this paper, we first extend the notion of separating map for module case and then we give a description of a linear se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2014